Loading...
 

Zjawisko Dopplera

Zjawisko Dopplera polega na pozornej zmianie częstotliwości fali z powodu ruchu obserwatora lub źródła fali.

W pracy z 1842 r. Christian Doppler zwrócił uwagę, że barwa świecącego ciała (częstotliwość wysyłanego promieniowania) musi się zmieniać z powodu ruchu względnego obserwatora lub źródła. Zjawisko Dopplera występuje dla wszystkich fal; my szczegółowo rozważymy je dla fal dźwiękowych. Ograniczymy się do przypadku ruchu źródła i obserwatora wzdłuż łączącej ich prostej.

Rozpatrzmy sytuację, gdy źródło dźwięku spoczywa, a obserwator porusza się w kierunku źródła z prędkością \( v_o \) (względem ośrodka). Jeżeli fale o długości \( \lambda \) rozchodzą się z prędkością \( v \) to w czasie \( t \) dociera do nieruchomego obserwatora \( {{vt}/\lambda } \) fal. Jeżeli obserwator porusza się w kierunku źródła (wychodzi falom na przeciw), to odbiera jeszcze dodatkowo \( {v_ot/\lambda } \) fal. W związku z tym częstotliwość \( f \ ' \) słyszana przez obserwatora

(1)
\( \begin{equation}{f \ '=\frac{\frac{{vt}}{\lambda }+\frac{v_{{o}}t}{\lambda}}{t}=\frac{v+v_{{o}}}{\lambda }=\frac{v+v_{{o}}}{\frac{v}{f}}}\end{equation} \)


Ostatecznie

(2)
\( \begin{equation}{f \ '=f\frac{v+v_{{o}}}{v}}\end{equation} \)


Obserwator rejestruje wyższą częstotliwość niż częstotliwość źródła. Kiedy obserwator oddala się od źródła należy w powyższych wzorach zmienić znak (na minus) prędkości obserwatora \( v_{o} \). W tym przypadku częstotliwość zmniejsza się.

Analogicznie możemy przestudiować przypadek źródła poruszającego się z prędkością \( v_{z} \) względem nieruchomego obserwatora (i względem ośrodka). Otrzymujemy wtedy zależność

(3)
\( \begin{equation}{f \ '=f\frac{v}{v-v_{{z}}}}\end{equation} \)


dla przypadku źródła zbliżającego się do obserwatora. Obserwator rejestruje wyższą częstotliwość niż częstotliwość źródła. Gdy źródło oddala się to w powyższym wzorze zmieniamy znak prędkości źródła \( v_{z} \). Ta sytuacja jest przedstawiona na Rys. 1, gdzie pokazane są powierzchnie falowe dla fal wysłanych ze źródła Z poruszającego się z prędkością \( v_{z} \) w stronę obserwatora O (rysunek a) w porównaniu do powierzchni falowych dla fal wysłanych znieruchomego źródła (rysunek b). Widzimy, że w przypadku (a) obserwator rejestruje podwyższoną częstotliwość.

: Fale wysyłane przez źródło Z: (a) poruszające się zprędkością {OPENAGHMATHJAX()}v_{z}{OPENAGHMATHJAX} w stronę obserwatora O; (b) przez nieruchome źródło
Rysunek 1: Fale wysyłane przez źródło Z: (a) poruszające się zprędkością \( v_{z} \) w stronę obserwatora O; (b) przez nieruchome źródło


Zwróćmy uwagę, że zmiany częstotliwości zależą od tego czy porusza się źródło czy obserwator. Wzory ( 2 ) i ( 3 ) dają inny wynik dla jednakowych prędkości obserwatora i źródła.

W sytuacji kiedy porusza się zarówno źródło, jak i obserwator, otrzymujemy zależność będącą połączeniem wcześniejszych wzorów.

(4)
\( \begin{equation}{f \ '=f\left(\frac{v\pm v_{{o}}}{v\mp v_{{z}}}\right)}\end{equation} \)


Znaki "górne" w liczniku i mianowniku odpowiadają zbliżaniu się źródła i obserwatora, a znaki "dolne" ich oddalaniu się. Powyższe wzory są słuszne, gdy prędkości źródła i obserwatora są mniejsze od prędkości dźwięku.

Zadanie 1: Klakson samochodu

Treść zadania:
Typowym przykładem efektu Dopplera jest zmiana częstotliwości dźwięku klaksonu samochodu przejeżdżającego koło nas. Słyszymy, że klakson ma wyższy ton, gdy samochód zbliża się do nas, a niższy, gdy się oddala. Załóżmy, że podczas mijania nas przez samochód rejestrujemy obniżenie częstotliwości klaksonu o 15%. Na podstawie tej informacji sprawdź czy samochód nie przekroczył dozwolonej, poza obszarem zabudowanym, prędkości 90 km/h. Prędkość dźwięku przyjmij równą 340 m/s.


Zjawisko Dopplera dla fal na wodzie ilustruje poniższy film:



Zjawisko Dopplera obserwujemy również w przypadku fal elektromagnetycznych, a więc i świetlnych. Opis tego zjawiska dla światła jest inny niż dla fal dźwiękowych. Dla fal dźwiękowych otrzymaliśmy dwa wyrażenia ( 2 ) i ( 3 ) na zmianę częstotliwości fali w zależności od tego czy to źródło, czy też obserwator poruszają się względem ośrodka przenoszącego drgania (powietrza).

Zjawisko Dopplera dla dźwięku ilustruje poniższy film:

Do rozchodzenia się światła nie jest potrzebny ośrodek (światło może rozchodzić się w próżni) ponadto, zgodnie ze szczególną teorią względności Einsteina, prędkość światła nie zależy od układu odniesienia i dlatego częstotliwość fali świetlnej odbieranej przez obserwatora zależy tylko od prędkości względnej źródła światła i obserwatora. Jeżeli źródło i obserwator poruszają się wzdłuż łączącej ich prostej to

(6)
\( \begin{equation}{f \ '\approx f\sqrt{\frac{1-\beta }{1+\beta }}}\end{equation} \)


gdzie \( {\beta =u/c} \). W tej zależności u jest prędkością względną źródła względem odbiornika, a c prędkością światła. Dla małych wartości prędkości względnej \( {|u| \ll c} \) powyższy wzór przyjmuje postać

(7)
\( \begin{equation}{f \ '\approx f\left(1\pm \frac{u}{c}\right)}\end{equation} \)


Znak "+" odnosi się do wzajemnego zbliżania się źródła i obserwatora, a znak "-" do ich wzajemnego oddalania się. Zbliżaniu towarzyszy więc wzrost częstotliwości (dla światła oznacza to przesunięcie w stronę fioletu), a oddalaniu się obniżenie częstotliwości (dla światła oznacza to przesunięcie w stronę czerwieni).

Zjawisko to ma liczne zastosowania: na przykład w astronomii służy do określenia prędkości odległych świecących ciał niebieskich. Porównujemy długości fal światła wysyłanego przez pierwiastki tych obiektów z długościami fal światła wysyłanego przez takie same pierwiastki znajdujące się na Ziemi. To właśnie szczegółowe badania przesunięć ku czerwieni w widmach odległych galaktyk wykazały, że Wszechświat rozszerza się.

Symulacja 1: Efekt Dopplera

Pobierz symulację

W programie pokazany jest efekt Dopplera dla fal dźwiękowych, dla przypadku ruchu źródła i obserwatora wzdłuż łączącej ich linii prostej. Program pozwala prześledzić zmiany częstotliwości odbieranych fal w zależności od prędkości źródła i odbiornika oraz ich kierunku ruchu.

Autor: Zbigniew Kąkol, Jan Żukrowski


Ostatnio zmieniona Środa 22 z Lipiec, 2015 08:26:03 UTC Autor: Zbigniew Kąkol, Bartek Wiendlocha
Zaloguj się/Zarejestruj w OPEN AGH e-podręczniki
Czy masz już hasło?
Hasło powinno mieć przynajmniej 8 znaków, litery i cyfry oraz co najmniej jeden znak specjalny.
Anti-Bot verification code image
Przypominanie hasła

Wprowadź swój adres e-mail, abyśmy mogli przesłać Ci informację o nowym haśle.
Dziękujemy za rejestrację!
Na wskazany w rejestracji adres został wysłany e-mail z linkiem aktywacyjnym.
Wprowadzone hasło/login są błędne.